COVID-19 Risks and Precautions for Choirs

NCCEH Evidence scan

Juliette O’Keeffe MSc, PhD
Environment Health and Knowledge Translation Scientist
National Collaborating Centre for Environmental Health

Choral Canada
August 19, 2020
Outline

1. About NCCEH
2. Notable COVID-19 outbreaks related to choirs
3. Understanding transmission risks
4. Precautionary measures
5. Emerging research
6. Q&A
Evidence-based knowledge synthesis and translation

Identify knowledge gaps

Foster networks, build capacity for Canada’s public health system

The National Collaborating Centres
Emerging Public Health Issues

e.g. COVID-19

Contaminants and hazards
COVID-19 resources for EH

Full report available at NCCEH.CA

...and many other COVID-19 resources
Notable outbreaks

Skagit Valley Washington,
- 53 cases of 61 person choir, three hospitalizations, 2 deaths
- Low community spread, avoided physical contact, used hand sanitizer
- Long duration, minimal spacing (15-25 cm), limited ventilation

Amsterdam Mixed Choir, Netherlands
- 102 cases of 130 person choir, four deaths (1 member, 3 associated persons)
- Multiple rehearsals Feb 25-Mar 7
- Symptomatic persons reported on Mar 3, 7 rehearsals and March 8 performance

Berlin Cathedral Choir, Germany
- 60 cases of 80 persons who attended a March 9 practice
- One member reported a positive COVID-19 test March 14
- Within two weeks, 30 positive and 30 additional symptomatic

French choirs
- Feb 28 - Whir au Val (Haut-Rhin) 20 choristers and 69 secondary cases; 9 deaths
- Mar 12 - Men’s choir practice, 19 cases of 27 participants, 7 hospitalizations, no deaths;
- Connected to another choir where several members reported symptoms
But outbreaks have occurred in other group settings where there was no singing – why are choirs special?

Settings of published outbreaks to Apr 2020

Leclerc et al. 2020
Outline

1. About NCCEH
2. Notable COVID-19 outbreaks related to choirs
3. Understanding transmission risks
4. Precautionary measures
5. Emerging research
6. Q&A
Common factors in many outbreaks

- Indoors
- Crowded spaces
- Close contacts
- Lots of interaction (greeting, talking, laughing, cheering, shouting, singing, sharing of food/objects)
- Long duration of interaction
- Poor ventilation
- Prevalence of community spread of the virus (symptomatic and asymptomatic)
Large respiratory droplets – direct exposure when in close contact with an infected person who is sneezing, coughing (droplets > 5 µm)

Smaller respiratory droplets/aerosols – direct exposure from close contact or indirect exposure from accumulated aerosols (droplets of < 5 µm)

Contact with contaminated surfaces/fomites followed by contact with nose, mouth, or eyes
Particle size

- **Large droplets (≥ 5~10 µm)**
 - More likely to fall to the ground at short distance
 - Intense but less frequently release in coughs/sneezes
 - More likely expelled by symptomatic persons
 - Upper airway

- **Smaller droplets/aerosols (< 5 µm)**
 - Less likely to fall to ground at short distance
 - May persist in the air for longer/accumulate
 - Less intense release but could be generated continuously
 - Generated by symptomatic **AND** asymptomatic/pre-symptomatic persons
 - Potential to reach lower respiratory tract
Singing in groups: Risks associated with large gatherings

- **Close contact** while greeting, talking, laughing, sharing of sheet music, stands, microphones
 - Increases risk of exposure to respiratory droplets and short-range aerosols
- **Gathering in large numbers for prolonged duration indoors**
 - Increases risk of exposure to accumulated aerosols
 - Limited ventilation reduces the dilution and dispersion of aerosols
- **Sharing of surfaces or objects** such as musical stands, chairs, books, microphones, instruments, food, dishes, drink dispensers
 - Increased risk of exposure via fomites
Singing in groups:
Risks associated with increased emission of droplets

- A combination of processes can affect **Quantity** and the **Size** of particles released during vocalization
- Main mechanisms for production of droplets during vocalization are fluid-film burst in the bronchioles
- Droplets release may also originate in the larynx and oral cavity
Singing in groups: Risks associated with increased emission of droplets

Quantity

- Vocalization of any type releases a higher concentration of particles than breathing
- Singing releases more particles than speaking
- Particle release is affected by:
 - Volume (Louder = more aerosols)
 - Vocalization style/enunciation
 - Deep exhalation and rapid inhalation
 - Super-emitters
Singing in groups:
Risks associated with increased emission of droplets

Particle size

- Studies have found that vocalization can produce a range of particle sizes:
 - Smaller droplets dominate (≤ 5-10 µm)
 - Up to 80% are ≤ 1 µm
 - Smaller droplets can remain suspended and travel further than large droplets
 - Smaller droplets are much more likely to penetrate the lower respiratory tract
Outline

1. About NCCEH
2. Notable COVID-19 outbreaks related to choirs
3. Understanding transmission risks
4. Precautionary measures
5. Emerging research
6. Q&A
Minimizing the Risks: Distancing

• Maintaining 2 m between participants helps reduce spread due to LARGE respiratory droplets

• Distancing can also help to reduce some of the short-range transmission of smaller droplets

• Maintaining distance is easier in larger venues/rooms

• Ensure distancing is maintained for ALL activities, not just while singing (e.g. entry/exit, warm up spaces, bathrooms)

• Additional barriers or partitions could be considered where practical to do so and distancing is difficult to maintain
Minimizing the Risks: Reduce density and duration

• Larger spaces with fewer faces
 • Reduced loading of infectious particles; increased dilution and dispersion of accumulated aerosols

• Shorter duration (e.g. 30 minutes) and breaks between rehearsal or performance
 • Reduces accumulation of potentially infectious particles
 • Breaks should be in a different location, and not compromise distancing principles
Minimizing the Risks: Ventilation

- Outdoors and uncrowded
- Large indoor space with mechanical/natural ventilation (high ACH)
- Smaller indoor space with mechanical or natural ventilation (high ACH)
- Avoid confined indoor space & no ventilation

Increasing risk
Minimizing the Risks: Personal measures

• Symptomatic or potentially exposed persons should stay home

• High risk/susceptible persons should stay home

• Face coverings – if possible wear at all times, particularly where closer encounters are more likely (More on masks in the Q&A)

• Hand hygiene

• Avoid close contact, handshakes, sharing of objects/equipment
Risk Assessment

• Various approaches (WHO, Spahn and Richter 2020, PHAC, etc.)

• Consider the specific circumstance
 • Risk level of participants
 • Risk level of the venue
 • Risk level of the activity
 • Level of community transmission

• Consider mitigation potential
 • Hierarchy of controls/mitigation measures, local PH advice

• Does mitigation eliminate or reduce risks sufficiently?
Outline

1. About NCCEH
2. Notable COVID-19 outbreaks related to choirs
3. Understanding transmission risks
4. Precautionary measures
5. Emerging research
6. Q&A
Emerging research (USA)

- International Coalition for the Performing Arts – preliminary results
 - Studies indicate that a higher concentration of respiratory particles are released during singing compared to breathing
 - Measurements indicate the effectiveness of masks and screens for reducing release of respiratory particles
 - Models of infection risk indicate risk increases over time; masks reduce risk overall

Indoor Case Study: Mask Impact on Infection Risk

Infection risk r by Wells-Riley equation at the height of mouth opening, with breathing rate of 8 L/min.

- $t = 10$ min
- $t = 30$ min
- $t = 60$ min
Emerging research (Germany)

- Mürbe et al. 2020
 - Laser particle counter study, 8 subjects during breathing, speaking and singing.
 - Significantly higher emission rates for singing compared to mouth breathing and speaking; Emissions increased with volume
 - Variation between singers; Higher emission rates for phonation by females vs. males

- Hartmann and Kriegel 2020
 - Relationship between CO₂ and aerosol concentration

- Hartmann et al. 2020
 - Risk assessment of rehearsal rooms for choirs with regard to virus-laden aerosols; Compared rehearsal rooms, concert Halls and office space

- Kriegel and Hartmann 2020
 - Indoor risk assessment of virus laden aerosols..

Emerging research

Risk Calculators

- COVID-19 Airborne Transmission Estimator (Jimenez 2020)
- Airborne Infection Risk Calculator (AIRC) (Mikszewski et al. 2020)
- Risk Analysis of the transmission of CARS-CoV-2 by aerosols (in German, Trukenmüller 2020)

Essential inputs
- Room dimensions
- Air exchange
- Number of persons
- Duration of exposure
Emerging research
Aerosols transmission

• Further understanding of transmission via aerosols

• Additional evidence of viral RNA detected in the room air of COVID-19 patients. Improved understanding of how virus moves around the room – particles found deposited on window sills, under the bed (Santarpia et al. 2020);

• Isolation of culturable virus from air sample of patient rooms > 2 m distance (Lednicky et al. 2020, pre-print)

Viral particles can be dispersed due to ambient air currents

These particles may be infectious
What remains unknown?

Many questions remain...

• Movement and accumulation of aerosols in different indoor environments?
• How long do viral particles remain infectious and what is the infectious dose?
• Transmission by children, severity of disease, longer term effects
• Effectiveness of emerging technologies
 • Disinfection technologies
 • New types of coatings/surfaces
• Results of further outbreak investigations
 • Improve understanding of transmission for different settings, activities, groups etc.
• And more...
Outline

1. About NCCEH
2. Notable COVID-19 outbreaks related to choirs
3. Understanding transmission risks
4. Precautionary measures
5. Emerging research
6. Q&A
thank you!

www.ncceh.ca
Juliette.okeeffe@bccdc.ca

Production of this presentation has been made possible through a financial contribution from the Public Health Agency of Canada.
Selected Key References

